USPC 4000 AirTech

Ein neues, bildgebendes Ultraschallprüfsystem für Ankopplung über Luft


Anwendungsbeispiele:

Sandwich-Bauteile mit Schaumkern

Sandwich-Bauteile werden zunehmend wegen ihrer hohen Festigkeit und Steifigkeit bei niedrigem Gewicht im Luft- und Raumfahrtsbereich eingesetzt. Aufgrund des Kernmaterials (hier Schaum) tritt eine extrem hohe Schallschlämung auf, deshalb können nur Frequenzen unterhalb von 200 kHz eingesetzt werden. Die Ankopplung über Luft hat den Vorteil, dass sich aufgrund der kleinen Schallgeschwindigkeit bei den nieder Frequenzen auch kleinere Wellenlängen ergeben, sodass die Ankopplung über Luft sogar eine bessere Auflösung als die mit Wasser ergibt. Das Sandwich-Bauteil (oben in Bild) enthält Ablösungen von den Deckschichten und Bohrungen (8 und 10 mm Durchmesser), die alle im C-Bild dargestellt wurden. Da unterschiedliche Schäume verwendet wurden, wird die linke Hälfte im C-Bild blau und die rechte Hälfte gelb dargestellt, was auf unterschiedliche Schallschlämungen deutet.

Betonprüfung

Durch den Einsatz neuer, breitbandiger Hochleistungsprüfköpfe (Empfindlichkeit -32 dB, Bandbreite bis zu 40 %) ist die Durchschallung von Betonbauteilen bis zu ca. 1 m Dicke problemlos möglich. Damit können C-Bilder innerhalb von wenigen Minuten aufgenommen werden, die deutlich innerliegende Fehlstellen wie Kiesnest, Hohlraume, Risse u. ä. darstellen. Bisher war die C-Bildaufnahme durch Ankopplungsprobleme erschwert (raue Oberfläche, Ankopplung über Paste u. ä.). Das Bild links zeigt den C-Scan einer 20 cm dicken Beton-Probe mit Kiesnest aufgenommen mit Ankopplung über Luft. Durch geschickte Wahl der Palette des C-Bildes werden natürliche Inhomogenitäten in Grauwerten und relevante Fehler in Farben dargestellt.

Die Echodynamik zeigt, durch das Kiesnest eine Abnahme der Empfangsspannweite um über 20 dB. Die 16 mm Bohrung schwächt das Empfangssignal um bis zu 9 dB.

Das A-Bild stellt den relativ kurzen Empfangsimpuls dar, der gegenüber Prüfungen mit konventioneller Ankopplung nur unwesentlich länger ist.

Copyright © 2020 Hillger/NDT GmbH. All rights reserved

HILLGER NDT GmbH
www.hillger-ndt.de
Hermann-Schlichting-Straße 3
D-38110 Braunschweig
Phone: +49 5307 7945
E-Mail: info@hillger-ndt.de
Einseitige Prüfung von Basaltplatten


Um eine wirtschaftliche Fertigung von keramischen Werkstoffen zu erhalten, ist es notwendig, Fehlstellen möglichst frühzeitig anzuzeigen, also im grünen Zustand vor dem energieintensiven Sintern.

Diese Grünkörpers dürfen nicht mit Koppelmittel geprüft werden, deshalb bietet sich eine Ankopplung über Luft an. Die unterschiedlichen Dichten werden durch die Laufzeiten angezeigt (oberes Bild).

Bei der Schallzugwächsung (im unteren Bild dargestellt) ergeben sich dagegen nur kleine Unterschiede.

Fehlerprüfung von Faserkeramik (CFC)


C- und das D-Bild ergänzen sich und zeigen klar die künstlich eingebauten Delaminationen an.

Auch bei der Prüfung von Holz kann häufig kein Koppelmittel verwendet werden. Der Probekörper enthält in Faserrichtung eine einzelne Bohrung (D = 30 mm) und eine Lochgruppe (D = 10 mm), die Innenfäule simulieren soll. Rechts daneben verlaufen Trocknungsrisse. Alle innenliegenden Fehler werden im C-Bild als Projektion zur Anzeige gebracht.